Information Bottleneck

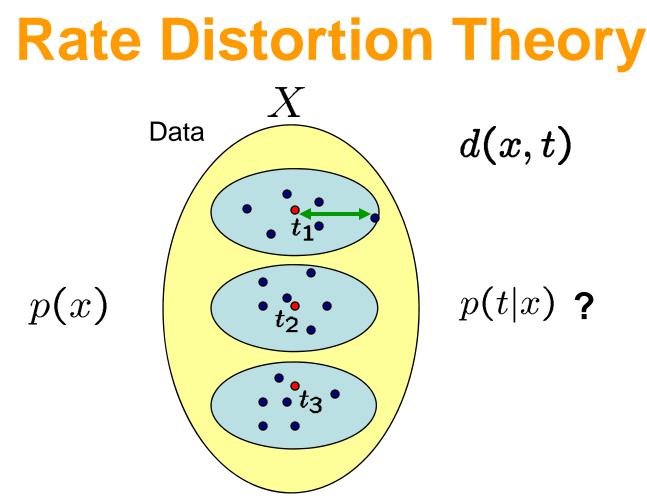
Rate Distortion Functions

Agenda

- Rate Distortion Theory
 - Blahut-Arimoto algorithm
- Information Bottleneck Principle
- IB algorithms
 - ilB
 - dIB
 - alB
- Application

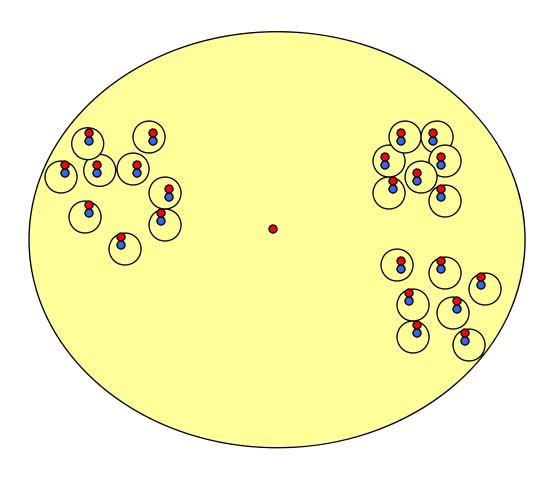
Rate Distortion Theory Introduction

- Goal: obtain compact clustering of the data with minimal expected distortion
- Distortion measure is a part of the problem setup
- The clustering and its quality depend on the choice of the distortion measure



• Obtain compact clustering of the data with minimal expected distortion given fixed set of representatives T

Rate Distortion Theory - Intuition



- T = X
 - zero distortion
 - not compact
 - I(T;X) = H(X)
 - |T| = 1- high distortion - very compact I(T; X) = 0

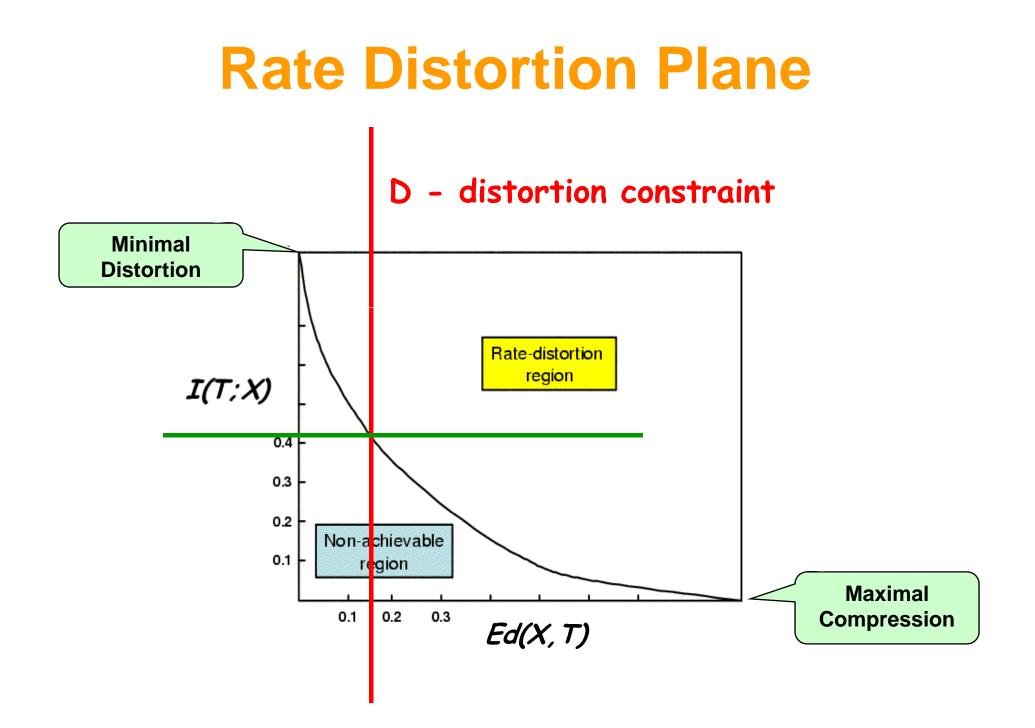
Rate Distortion Theory – Cont.

• The quality of clustering is determined by

- Complexity is measured by
$$I(T; X)$$
 (a.k.a. Rate)

Distortion is measured by

$$Ed(X,T) = \sum_{i,j} p(x_i) p(t_j | x_i) d(x_i, t_j)$$



Rate Distortion Function

- Let D be an upper bound constraint on the expected distortion

Higher values of *D* mean more relaxed distortion constraint Stronger compression levels are attainable

- Given the distortion constraint $D\,$ find the most compact model (with smallest complexity R)

$$R(D) \equiv \min_{\{p(t|x): Ed(X,T) \le D\}} I(T;X)$$

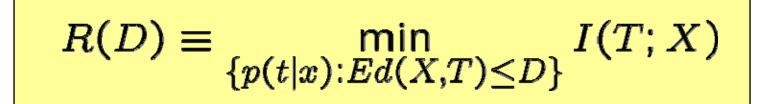
Rate Distortion Function

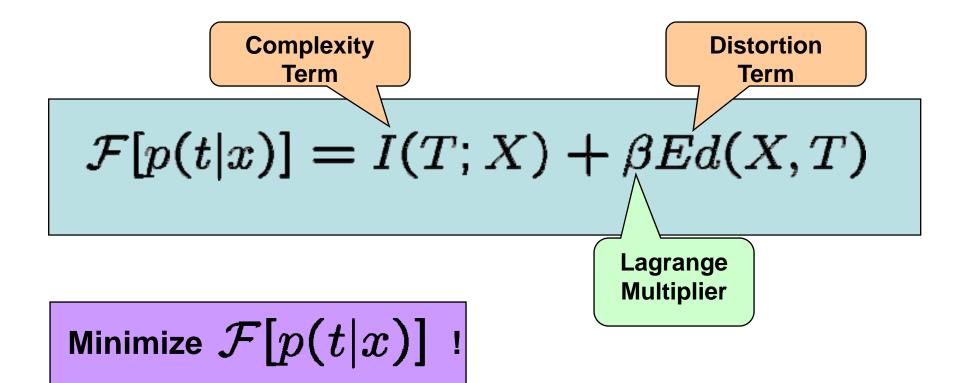
• Given

- Set of points X with prior p(x)
- Set of representatives T
- Distortion measure d(x, t)
- Find
 - The most compact soft clustering p(t|x) of points of X that satisfies the distortion constraint D
- Rate Distortion Function

$$R(D) \equiv \min_{\{p(t|x): Ed(X,T) \le D\}} I(T;X)$$

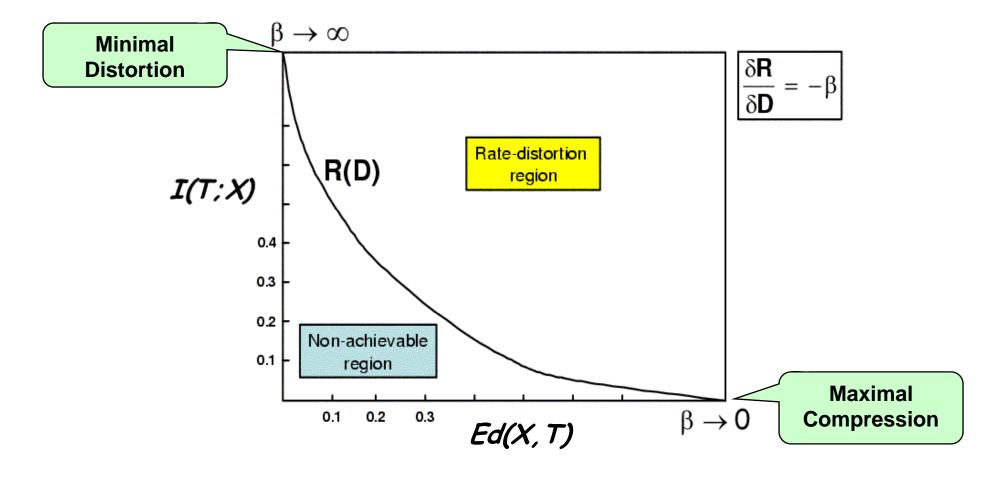
Rate Distortion Function





Rate Distortion Curve

$$\mathcal{F}[p(t|x)] = I(T;X) + \beta Ed(X,T)$$



Rate Distortion FunctionMinimize $\mathcal{F}[p(t|x)] = I(T; X) + \beta Ed(X, T)$ Subject to $\sum_{t} p(t|x) = 1 \ \forall x \in X$ The minimum is attained when $\frac{\partial \mathcal{F}}{\partial p(t|x)} = 0$



 $p(t|x) = \frac{p(t)}{Z(x,\beta)} e^{-\beta d(x,t)}$ **Normalization**

Solution - Analysis
$$\mathcal{F}[p(t|x)] = I(T; X) + \beta Ed(X, T)$$

$$p(t|x) = \frac{p(t)}{Z(x,\beta)} e^{-\beta d(x,t)}$$

Solution:

The solution is implicit

$$p(t) = \sum_{x} p(x) p(t|x)$$

Known

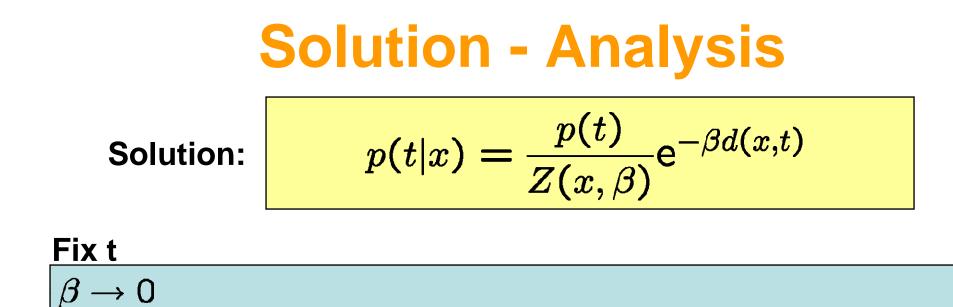
Solution - Analysis

Solution:

$$p(t|x) = \frac{p(t)}{Z(x,\beta)} e^{-\beta d(x,t)}$$

For a fixed t

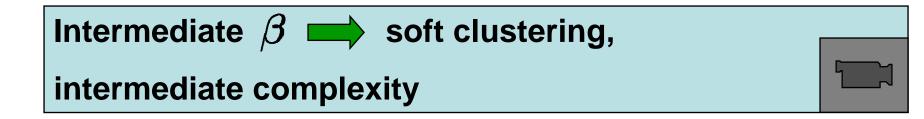
When x is similar to t



Fix x

 $eta
ightarrow\infty$

Solution - Analysis
Solution:
$$p(t|x) = \frac{p(t)}{Z(x,\beta)} e^{-\beta d(x,t)}$$



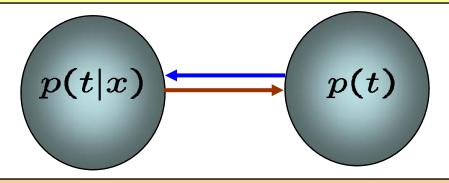
Agenda

- Motivation
- Information Theory Basic Definitions
- Rate Distortion Theory
 - Blahut-Arimoto algorithm
- Information Bottleneck Principle
- IB algorithms
 - ilB
 - dIB
 - alB
- Application

Blahut – Arimoto Algorithm

Input:
$$p(x), T, \beta$$
Randomly init $p(t)$

$$p(t|x) = \frac{p(t)}{Z(x,\beta)} e^{-\beta d(x,t)}$$
$$p(t) = \sum_{x} p(x) p(t|x)$$



Optimize convex function over convex set the minimum is global

Blahut-Arimoto Algorithm

Advantages:

- Obtains compact clustering of the data with minimal expected distortion
- Optimal clustering given fixed set of representatives

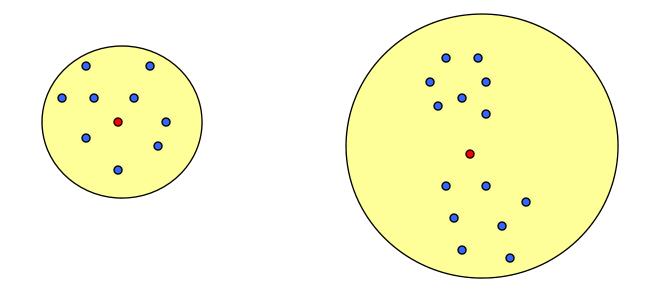
Blahut-Arimoto Algorithm

Drawbacks:

- Distortion measure is a part of the problem setup
 - Hard to obtain for some problems
 - Equivalent to determining relevant features
- Fixed set of representatives
- Slow convergence

Rate Distortion Theory – Additional Insights

Another problem would be to find optimal representatives given the clustering.



 Joint optimization of clustering and representatives doesn't have a unique solution. (like EM or K-means)

Agenda

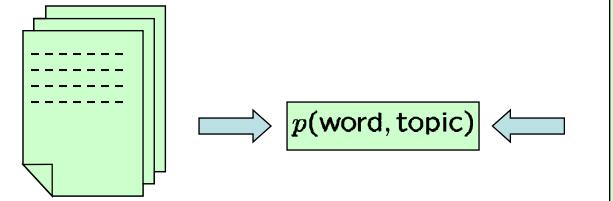
- Motivation
- Information Theory Basic Definitions
- Rate Distortion Theory
 - Blahut-Arimoto algorithm
- Information Bottleneck Principle
- IB algorithms
 - ilB
 - dIB
 - alB
- Application

Information Bottleneck

- Copes with the drawbacks of Rate Distortion approach
- Compress the data while preserving "important" (relevant) information
- It is often easier to define what information is important than to define a distortion measure.
- Replace the distortion upper bound constraint by a lower bound constraint over the relevant information

Information Bottleneck-Example

Given:



Documents

Joint prior

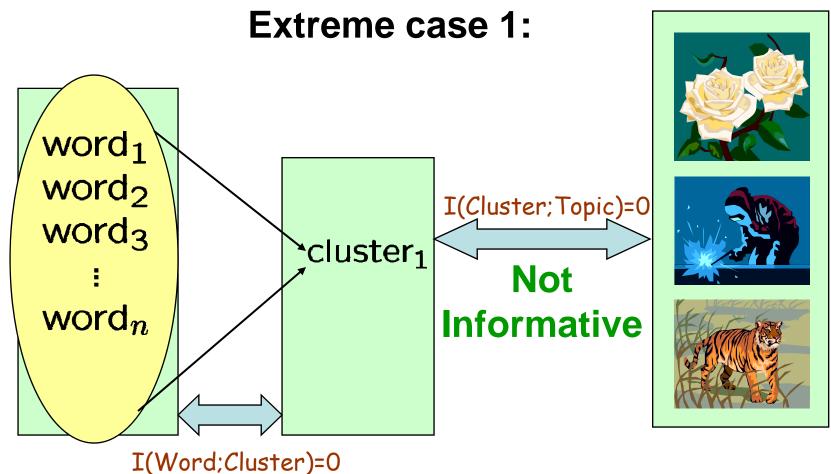
Topics

Information Bottleneck-Example Obtain: I(Word; Topic) word₁ word₂ cluster₁ I(Cluster; Topic) word₃ ; cluster₂ $cluster_m$ word $_n$

I(Word;Cluster) Words Partitioning

Topics

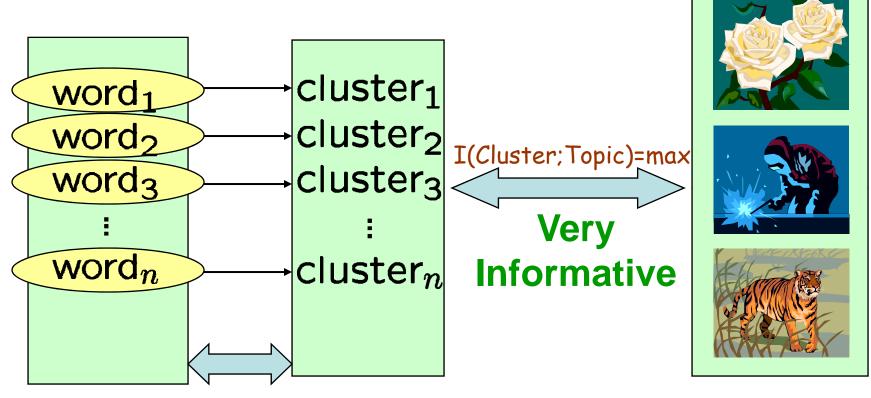
Information Bottleneck-Example



Very Compact

Information Bottleneck-Example

Extreme case 2:



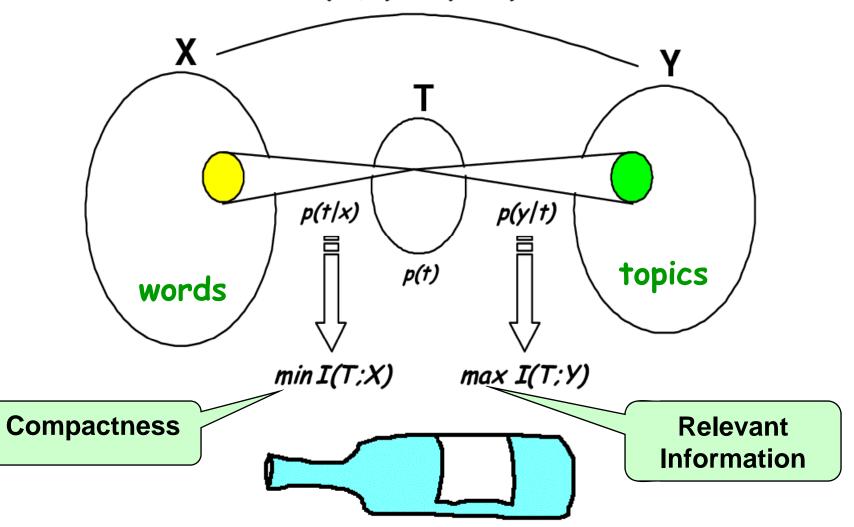
I(Word;Cluster)=max

Not Compact

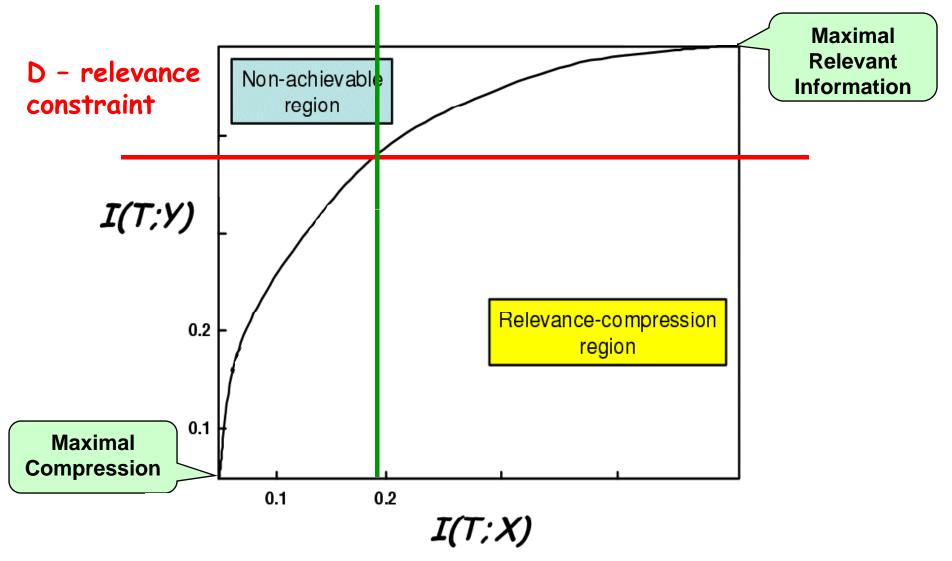
Minimize I(Word; Cluster) & maximize I(Cluster; Topic)

Information Bottleneck

 $P(X,Y) \sim I(X;Y)$



Relevance Compression Curve



Relevance Compression Function

• Let \hat{D} be minimal allowed value of I(T;Y)

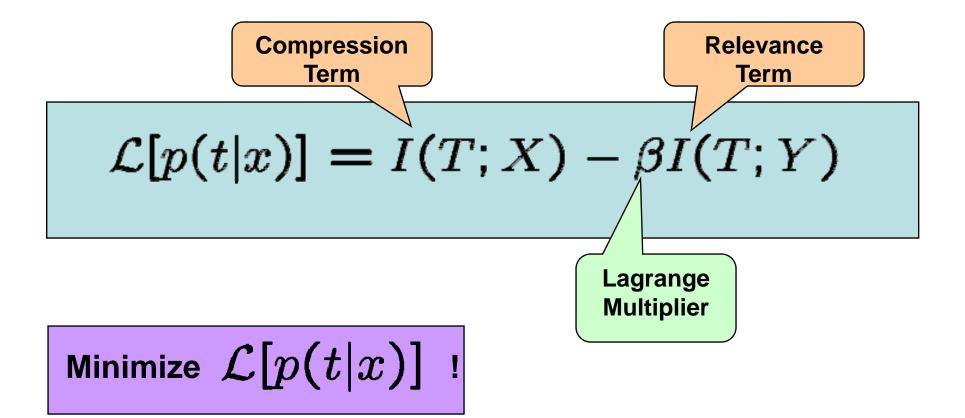
Smaller $\hat{D} \longrightarrow$ more relaxed relevant information constraint Stronger compression levels are attainable

• Given relevant information constraint \hat{D} Find the most compact model (with smallest \hat{R})

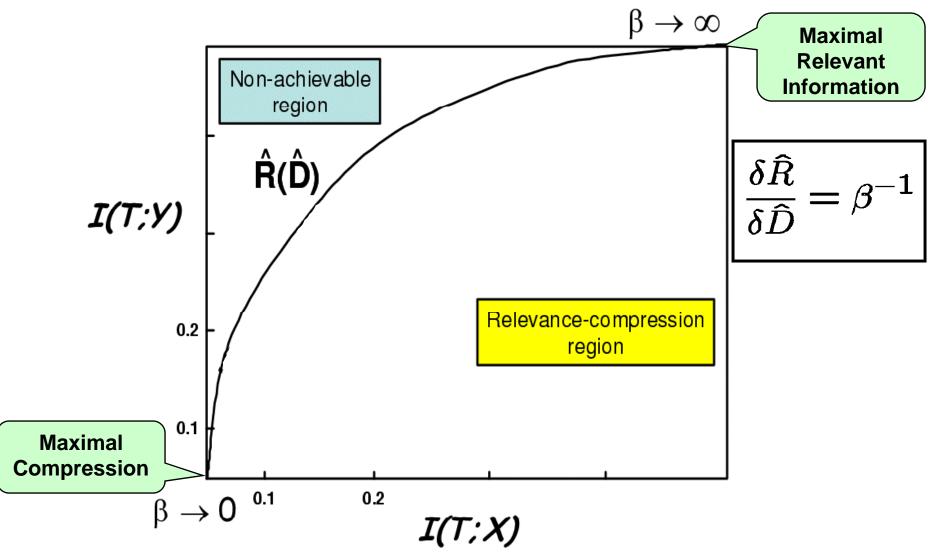
$$\widehat{R}(\widehat{D}) \equiv \min_{\substack{\{p(t|x): I(T;Y) \ge \widehat{D}\}}} I(T;X)$$

Relevance Compression Function

$$\widehat{R}(\widehat{D}) \equiv \min_{\substack{\{p(t|x): I(T;Y) \ge \widehat{D}\}}} I(T;X)$$



Relevance Compression Curve



Relevance Compression Function

Minimize

$$\mathcal{L}[p(t|x)] = I(T;X) - \beta I(T;Y)$$

Subject to
$$\sum_{t} p(t|x) = 1 \ \forall x \in X$$

The minimum is attained when

$$\frac{\partial \mathcal{L}}{\partial p(t|x)} = 0$$

$$p(t|x) = \frac{p(t)}{Z(x,\beta)} e^{-\beta K L[p(y|x)||p(y|t)]}$$
Normalization

Solution - Analysis
$$\mathcal{L}[p(t|x)] = I(T; X) - \beta I(T; Y)$$

Solution:
$$p(t|x) = \frac{p(t)}{Z(x,\beta)} e^{-\beta K L[p(y|x)||p(y|t)]}$$

The solution is implicit

$$\begin{cases} p(t) = \sum_{x} p(x) p(t|x) \\ p(y|t) = \frac{1}{p(t)} \sum_{x} p(x,y) p(t|x) \end{cases}$$
 Known

- -

Solution - Analysis

Solution:
$$p(t|x) = \frac{p(t)}{Z(x,\beta)} e^{-\beta KL[p(y|x)||p(y|t)]}$$

• KL distance emerges as effective distortion measure from IB principle

For a fixed t

When p(y|t) is similar to p(y|x)

The optimization is also over cluster representatives