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 Goal: obtain compact clustering of the
data with minimal expected distortion

e Distortion measure is a part of the
problem setup

 The clustering and its quality depend
on the choice of the distortion measure



 Obtain compact clustering of the data
with minimal expected distortion given
fixed set of representatives T

Cover & Thomas



e I'= X
—zero distortion
— not compact

I(T; X) = H(X)

T| =1
— high distortion
—very compact

I(T; X) =0




 The quality of clustering is determined by

— Complexity is measured by | I(T; X)
(a.k.a. Rate)

— Distortion iIs measured by

Ed(X,T) = Y. p(e)p(t;|z;)d(z, t;)
tJ
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« Let D be an upper bound constraint on the
expected distortion

Higher values of D mean more relaxed
distortion constraint

4

Stronger compression levels are attainable

« Given the distortion constraint D find the most
compact model (with smallest complexity R)

R(D) = min I(T; X)
{p(t|z):Ed(X,T)<D}




e Glven
— Set of points X with prior p(x)
— Set of representatives T’
— Distortion measure d(x,t)
 Find
— The most compact soft clustering p(t|z)of

points of X that satisfies the distortion
constraint D

e Rate Distortion Function

R(D) = min I(T; X)
{p(t|lx):Ed(X,T)<D}




R(D) = min I(T; X)
{p(tle) Ed(X,T)<D}
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Flo(tle)] = I(T; X) + BEd(X,T)
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Minimize

Flo(tlz)] = I(T; X) + BE4(X,T)

Subjectto » p(tlz) =1Vze X
[

oOF

The minimum is attained when —N0

o

Op(t|z)

[ Normalizatiorﬁ




Flp(tlz)] = I(T; X) + BEA(X,T)

. _ p(t) —Bd(x,t)
Solution: | p(tlz) = Z(a:,,B)e

Known

The solution is implicit p(t) =) p(z)p(t|x)
Xz



Solution: p(t|g;) —

For a fixed t

When Zis similarto ©




Solution:

Fix t

p(t|z)

p(t)

~ Z(z, B)

e_/@d(wst)

—0

FIx X

p— o0




Solution:

p(tlz) =

Intermediate (3 =m) soft clustering,

Intermediate complexity

Varying 5 —>
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Input: p(z), T, B
Randomly init p(?)

? p(tlz) = Zz()it)ﬁ)e_ﬁd(“”t)

p(t) = ) _p(z)p(t|z)

@ < ] a

Optimize convex function over convex set
==)>  the minimum is global




Advantages:

 Obtains compact clustering of the data with
minimal expected distortion

 Optimal clustering given fixed set of
representatives



Drawbacks:

« Distortion measure is a part of the problem
setup
— Hard to obtain for some problems
— Equivalent to determining relevant features

 Fixed set of representatives

e Slow convergence



— Another problem would be to find optimal
representatives given the clustering.

— Joint optimization of clustering and
representatives doesn’t have a unique solution.
(like EM or K-means)
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Copes with the drawbacks of Rate Distortion
approach

Compress the data while preserving “important”
(relevant) information

It Is often easier to define what information is
Important than to define a distortion measure.

Replace the distortion upper bound constraint by a
lower bound constraint over the relevant information



Documents

Given:

p(word, topic)

Joint prior




Obtain:
I(Word; Topic)

i

~clustery|  rcjuster; Topic)
> clusterp < P>

> clustery,

I(Word;Cluster)
Words Partitioning Topics



Extreme case 1:

TN
ﬂVOI’d 1

Wor(d:|2 I(Cluster;Topic)=0
elieg “clustery

L Not
wordn Informative

@\/

I(Word;Cluster)=0
Very Compact



Extreme case 2:

ustery

uste r2 I(Cluster; Topic)=max
usterz <

P ; Very
C_wordy >——clusterp| Informative

I(Word;Cluster)=max

Not Compact

Minimize I(Word; Cluster) & maximize I(Cluster; Topic)




P(X,Y)~I(X:Y)

X/\Y

T

[

p(t/x) ' piyl?)
words @ p(t) @ topics

minI(T;X) max I(T.Y)

Compactness

Relevant }

g
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. Let D be minimal allowed value of I(T;Y)

Smaller ) ‘ more relaxed relevant
Information constraint

Stronger compression levels are attainable

P

« Given relevant information constraint )
Find the most compact model
(with smallest R)

R(D) = min  I(T; X)
{p(t|e): I(T}Y)2D}




R(D) = min
{p(t|lz): I(T;Y)2D}

I(T; X)

{ Compression }
Term
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Llp(tlz)] = (T; X) — BI(T;Y)

/

Lagrange
Multiplier

Minimize ,C[p(t\ac)] |
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Minimize | Llp(t|lx)] = I(T; X) — BI(T;Y)

Subject to Zp(t|a:) =1Vere X
t

or
Op(t|x)

The minimum iIs attained when

O

)
) o(t)c) = Zf(’i ?6)9 BK Lip(ylz)[p(y]t)]

/

[ Normalization




Llp(tlx)] = I(T; X) — I(T;Y)

Solution: |p(t|z) = Z1(9 (t?B ) e—BKL[p(ylz)||p(y[t)]
:B,

Known
Cp(t) = t
The solution iIs . p(t) Zp(m)p( )

implicit p(ylt) = ﬁZp(w , Y)p(t|z)




Solution: |p(tz) = —P)_e~BKLIp(Io)|p(It)]

Z(x, B)

KL distance emerges as effective distortion measure
from IB principle

For afixed 1

When p(y|t) is similar to p(y|z)

—

The optimization is also over cluster representatives




